
164 RAPIDLY COOLED ALLOYS WITH ICOSAHEDRAL SYMMETRY. I 

cell with four flat and four pointed rhombohedra, 
and model II has a complicated unit cell involving 
32 fiat and 52 pointed rhombohedra, plus rules for 
accommodating modulations. Model II bears an 
obvious resemblance to the aperiodic structures 
attempted by others (e.g. Levine & Steinhardt, 1984). 
In view of the success of model I in leading to the 
derivation of additional periodicities through sublat- 
tices, and in explaining the possibility of observing 
icosahedral diffraction patterns, it is preferred for its 
physical plausibility over either the model II unit cell 
or the undecorated aperiodic structures. 

In conclusion, the electron diffraction patterns 
taken from icosahedral phase A1-Mn can be under- 
stood in terms of an icosahedral cubic reference lattice 
derived from six modulation vectors qi (~) plus six 
collinear modulations q(2). The appearance of the six 
r{s may be taken together with theoretical results of 
Bak (1985). However, if the model derived in this 
work is to be understood within the context of 
ordinary incommensurate modulated crystals, the 
theory would have to be generalized to include struc- 
tures for which the observed point symmetry is 
already realized in the unit cell of the reference lattice. 
Naturally, the pattern of atomic sites in this derived 
unit cell of the reference lattice is excluded from the 
230 space groups because it conforms to icosahedral 
point symmetry. 

In retrospect, once the experimental data required 
six independent vectors for indexing the diffraction 
pattern and for the construction of an atomic motif, 
the appearance of more than one three-dimensional 
periodicity was inevitable. In the following paper 
(Kuriyama & Long, 1986) the full mathematical struc- 
tures of the a cell and the a ÷ sublattices are given. It 
is also shown how they are accommodated into a 
structure consistent with both sets of modulation vec- 

tors. In that work the full structure factor in terms of 
atomic positions is derived. 

The authors gratefully acknowledge assistance with 
the experiment by L. Bendersky. We are also indebted 
to H. Fowler for his calculations in the preparation 
of Figs. 5 and 6, and to R. Roth for useful discussions. 
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Abstract 

The icosahedral cubic cell, derived in the first of this 
set of two papers, is further developed. Rules for the 
occupancy of atomic sites are derived based on peri- 
odic modulations over the reference lattice. The form 
of the derived structure, which involves partial 

Fibonacci sequence stacking, suggests that the true 
structure is the limit of a superposition of successively 
larger periodic sequences. The structure factor for the 
limiting (nonperiodic) structure is derived and some 
physical insights into the application of almost peri- 
odic functions to icosahedral phase A1-Mn are 
given. 
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1. In troduc t ion  

This is the second in a series of two papers on the 
atomic scale structure of icosahedral phase A1-Mn 
alloys. In the first paper (Long & Kuriyama, 1986), 
hereinafter called I (see also Kuriyama, Long & Ben- 
dersky, 1985), a unit cell for a reference cubic lattice 
was derived which was called ' icosahedral cubic'. The 
approach of these papers (both I and II) has been to 
explore the unique opportunity offered by the fabrica- 
tion of an icosahedral phase alloy. 

In I, the electron diffraction patterns taken from 
this material resulted in the identification of two 
colinear sets of six modulat ion vectors in momentum 
space. After conversion to real space, one set was 
considered to be 'correlation distances'. Using these, 
an atomic arrangement was found which led to the 
identification of a unit cell of the reference lattice. 
The two rhombohedra commonly used in nonperiodic 
icosahedral models were derived, where these rhom- 
bohedra are decorated by atomic sites on each face 
as well as at each vertex. 

Although the unit cell in I conforms to the icosahe- 
dral point group, it alone cannot account for the 
diffraction patterns. Either there is another three- 
dimensional periodicity or lattice(s), or the second 
set of modulations is a physical phenomenon.  Since 
each diffraction spot was indexed by six (modulation) 
vectors and only three vectors define the unit cell, 
three more vectors in real space were sought. This 
would produce a structure in which sublattices co- 
exist with the reference lattice. Another way of deriv- 
ing the full atomic scale structure (and understanding 
the diffraction patterns) would be to accept the second 
set of six modulat ion vectors as physical modulations 
of the structure. In this case, as in the case above, 
the sublattice sites are derived. Thus, these two 
approaches are closely related. In either case, our 
understanding of modulated structures would have 
to be generalized. 

In contrast to the phenomenological  treatment of 
the diffraction patterns, the objective of this series of 
papers is to identify the atomic structure for this 
material. The experimental analysis in I is in agree- 
ment with the vertex model (Nelson & Sachdev 1985). 
However, that model alone is inadequate for the 
determination of an atomic structure 

In this work, the properties of the unit cell are 
studied and the rules for packing and occupancy of 
atomic sites are developed. In § 2, the correlation 
vectors for the framework of the model are given and 
it is shown that the transformation matrix relating 
one possible reference unit cell in the model to 
another is the icosahedral transformation. The atomic 
sites associated with the reference lattice, which were 
used in I, are given explicitly in § 3, and are used to 
derive other atomic sites consistent with the model. 
In § 4, rules for the occupancy of atomic sites are 

Table 1. Observed modulations in momentum space 

qt = q sin 0 (r, 1, 0) 
= q sin 0 (1, 0, r) 
= q sin 0 (0, ~', 1) 

q4 = q sin 0 ( -1 ,  0, r) 
q5 = q sin 0 (0, ~', - 1 )  
q6 = q sin 0 (r, - 1 , 0 )  

developed through staggered layering based on peri- 
odic modulations over the reference lattice. Finally, 
the limit of the staggered occupancy sequence is taken 
for successively larger periodic modulations. This 
yields the staggering sequence as the superposition 
of all these periodic modulations. The Fourier trans- 
form for this limiting system is given in § 5. 

2. C o r r e l a t i o n  vectors  

The good agreement between the calculated diffrac- 
tion patterns and the experimental patterns in I 
demonstrates that the positions of the diffraction 
spots are given by F. niqi, where i = 1 , . . . ,  6 and the 
q~'s are given in Table 1. (Since the two sets of 
modulation vectors are colinear, only one set of six 
vectors is used in what follows.) The modulation 
vectors in this table are described using a Cartesian 
coordinate system, Oxyz, in which the z axis is [001] 
perpendicular to a twofold diffraction pattern, and x 
and y are two other twofold axes, [100] and [010], 
respectively. The value of ~" is given by cos 0/sin 0, 
where the experimental data demonstrate that the 
angle 0 is the icosahedral angle (=31.717. . . ° ) .  Then 
z is the Golden Section and is equal to (1 +x/5)/2.  

In all of the electron diffraction patterns one can 
recognize periodic repetitions of the positions of 
diffraction spots. This is true of the three- and fivefold 

1 
Reference 

..~-- 1 Cube " 

1 
1 

Cube 
1 

Fig. 1. T h r e e  poss ib l e  r e f e r ence  f r ames  s u p e r i m p o s e d  on  a t w o f o l d  
pa t te rn .  T h e  f r a m e  l abe led  1 was  a s s u m e d  to  be  a r e fe rence  
lat t ice in p a p e r  I. 



166 RAPIDLY COOLED ALLOYS WITH I C O S A H E D R A L  SYMMETRY. II 

Table 2. A preliminary choice of  the two reference 
lattices 

a~-= 1 / q s i n 2 0  (sin 0, 0, 0) 
+ 1 / q s i n 2 0 ( O ,  sinO, O) a 2 = 
+ 1 / q s i n 2 0 ( O , O ,  sinO) a 3 = 

at = 1/q  sin 20 (cos 0, 0, 0) 
a2 = 1/q  sin 20 (0, cos 0, 0) 
a 3 = 1/q  sin 20 (0, 0, cos 0) 

a~"s and  ai ' s  correspond to a~-(III) 's and  a i ( I I I ) ' s ,  respectively, in Tables 
4 and  5 which follow. 

patterns, as well as the twofold (paper I). In the 
twofold pattern, three square frames are easily seen 
(Fig. 1). The largest frame was originally selected to 
be the reference reciprocal lattice. It was later found 
that the reference frames themselves could be created 
as sums and differences of pairs of q/s.  For example, 
the largest reciprocal-lattice frame could be obtained 
by b~- = ql -f" q6, b~- = q3 + q5 and b~- = q2 + q4 and the 
middle frame by b~=q2-q4 ,  b 2 = q l - q 6  and b3 = 
q3-qs.  From these frames in reciprocal space, one 
can obtain the reference frames, ai and + a~, in real 
space given in Table 2. 

Next, we define a set of vectors ri: r, 100 0 10(a, / 
r2 lO a2 
r3 = ( 1 / 2 )  1 0 0 0 a3 (2.1) 

r5 1 0 0 0 - a 

r 6 0 0 0 -1  \ a 3 /  

o r  

a l  

a 2  

a3  
-i- 

a l  
+ 

El 2 
+ 

El 3 

l l  

0 

0 

0 

1 

0 

0 0 0 0 1 ~ 

0 1 0 1 0 

1 0 1 0 0 

1 0 - 1  0 0 

0 0 0 0 -1  

0 1 0 -1  0 

r2 

r3 

r4 

r5 

kr6 

(2.2) 

The vectors ri are listed in Cartesian coordinates in 
Table 3, where 

Ir, I = r, Iq,I = q, ( 2 .3 )  

and 

r = (1/2q sin 20). 

Then the lattice parameters are a = la~l = 2rr  sin 0 = 
2r cos 0 and a + = [a+l = 2r sin 0. 

Since the q / s  (and thus the r/'s) are defined in 
three-dimensional space in terms of the icosahedral 
angle 0, the following relations hold: 

r 2 = 1 r l | r 5 ] ,  (2.4) 

r3 r 1 ] \ r 6 /  

Table 3. Atomic correlations 

rt = r sin 0 (r, 1, 0) 
r 2 = r sin 0 (1, 0, ¢) 
r3 = r sin 0 (0, ~, 1) 
r4=  r sin 0 ( - 1 , 0 ,  ¢) 
r5 = r sin 0 (0, ¢, - 1) 
r6 = r sin 0 (~, - 1 ,  0) 

o r  (r4) (1 1 1,:r, 
r5 = ' r - 1  -1  ~-l]|r21, 
r 6 z - 1  r - 1  -1  / \ r 3 /  

(2.5) 

where r - 1  is 1/r. 
From (2.1) and (2.2), it is evident that the original 

choice of sums and differences of pairs of ri's is not 
unique. Another ai and a~- set with the same magni- 
tudes could just as consistently have been derived 
from a permuted set of sums and differences. In all, 
there are five equivalent sets of reference lattice vec- 
tors as listed in Tables 4 and 5. The transformation 
matrix M relating the reference lattices to each other 
is the icosahedral transformation 

M = (1/2) 1 ~- -1  , (2.6) 

1 r - 1  

and M 5 = I. It turns out that the original examples of 
a~ and a~ are the ai(III)  and a~-(III) in the tables. 
Useful relations for generating Tables 4 and 5 are 

0 ~ [a , ( I )~  

• - l } | . : ( I ) /  

1 ] \ a 3 ( I ) ]  

(2.7) 

1 \ / a l ( I ) ~  

0 lla2(I)]. 

(2.8) 

r2 = (1/2) 0 

r3 7"--  1 

o r  (r4) ( o 
r5 = (1 /2 )  - ( r - l )  1 

r6 1 0 

Only the qitl)'s lead to a set of ri's, which can be 
considered to be atomic correlation distances. 
Hereafter it is understood that ai a~- and r~ are all 
referred to set qi (1). As seen in I, the vector set of ai 
does serve as the reference lattice. Whether the set of 
a~ is another reference lattice, or the modulation set 
q(2) is more fundamental than the a~ lattice(s) will 
be answered in the following sections. 

3. Atomic sites 

The atomic sites in this material were found in I to 
be given by 

R ( n ) =  Y. n,r,, (3.1) 
i=1 ..... 6 
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Table 4. Equivalent choices of the large reference lattice 

I: a,(I) = r2+r6 /a,(I)~ [at(I)~ 
a2(I) = rt +r5 /a2(I) /= MS/a2(I) / 
a3(I) = r3 + r4 \a3(I)] \a3(I)] 

II: at(II) = r2+r3 /al(II)~ /al(I)~ 
a2(II) = r t -  r,, /a2(II)} = M/a2(I) / 
a3(II ) = r 5 -  r 6 \a3(II)] \a3(I)] 

III: ax(III) =r3+r5 /al(III)~ /al(I)~ 
a2(III) = rl +r6 /a2(II I ) /= M2[a2(I) / 
a3(III) = - r 2 -  r4 \a3(III)] \a3(I)] 

IV: at(IV) = r 4 - r  s /al(IV) ~ [at(I)~ 
a2(IV) = - r l - r 2  |.~(IV)} = u~/a~(I)/ 
a3(IV) =r3-r6 \a3(IV)] \a3(I)] 

V: at(V) =r4-r6 [a,(V)~ /ax(I)\  
a 2 ( V )  - -  - r ,  - 1"3 / a 2 ( V ) / =  M4/a2(I)/ 
aa(V) = - r 2 -  r5 \a3(V)] \a3(I)] 

Table 5. Equivalent choices of the small reference 
lattice 

I: a~(I) = r t - r 5  
a ~ ( I )  = r 3 -  r 4 

a ~ ( I )  = r 2 -  r6 

II: a ~ ( I I )  = rt + r 4  

a~'(II) = rs+r 6 
a~(II) = - r2+r  3 

III: a~(III) = r t - r  6 
a ~ ( I I I )  = r 2 - r  4 

a ~ ( I I I )  = - r  3 + r s 

IV: a+(TM) = rl -- r2 
a~(IV) = r3 + r6 

+ 
a 3 (IV) -- - r 4 -  rs 

V: a~(V) -- rx - r3 
a ~  ( V )  = r 2 + r 5 

+ 
a 3 (V) = r4+r 6 

( a~-(I)\ /a t(I) \  
a~'(I) / - - l l /a2( I ) /  

a~'(I) / ¢ \a3(I)/  

a+(II)\ /a t ( I ) \  
a~( I I ) /=1  M/a2(I)/ 

+ ' r  
\a3 (It) /  \a3(I)/  

( a~'(III), /a l ( I ) \  
a+(III) I =1  M2/a2(I)/ 
a~(III)/ 'r \a3(i) ] 

( a~(IV)\ /a2(I)\ 
a~(IV)] =1  M3/a2(I)/ 

+ T 
\a3 (IV)/ \a3(I) ] 

( aT(V)\ /a,(I)\ 
aZ(V)/=-~ U'/a2(I)| 
a;(V)] r \a3(I)] 

where n = (nl, n2, n3, n4, n5, n6) with ni equal to zero 
or positive or negative integers. This relation is valid 
everywhere in the material. Unfortunately, (3.1) 
requires as many n's as there are atoms in the material. 
It may, however, be possible to reduce the number 
of n's needed with the aid of the reference lattices. 
In I, the 'unit cell' for the a lattice was found to 
contain 32 atomic sites as listed in Table 6. Here we 
adopt the choice of {a~(I)} for the a lattice and, 
consequently, {a~(I)} is chosen for the a ÷ basis. 

It is intriguing to note that the eight basic atomic 
positions, numbered 1 to 8 in Table 6, generate the 
rest of the atomic positions by a~ translations. These 
eight groups can be further reduced to four since the 
atomic positions have equivalent positions produced 
by a translation based on the a lattice. Atomic sites 
7, 6 and 5 can be replaced by 7 ' = 7 + [ 1 1 0 ] ,  6 '=  
6+[011]  and 5 ' = 5 + [ 1 0 i ] ,  respectively. (7, 6 and 5 
in Table 6 are therefore replaced by 7', 6' and 5'.) It 

Table 6. The atomic sites in the a cell 

{ai(I)} and {a+(I)} are used to generate this table. 

(5 5 _~ I N o .  1 (0 ,  0 ,  0)  N o .  8 \ 2 '  2'  2 ]  

No. 17 No. l+a~  No. 18 No. 8 - a ~  
[111] No. 23 No. l+a~  No. 26 No. 8 - a ~  

No. 29 No. 1 + a~ No. 28 No. 8 - a ~  

[~ ' -1  1 ~ (1 ¢ -1  ~'~ 
II No. 2 ~--~--, ~, 0) No. 7 \~, --~--, ~] 

No. 21 No. 2 - a ~  No. 25 No. 7+a~ 
[111] No. 15 No. 2+a~ No. 19 No. 7 - a ~  

No. 11 No. 2+a~ No. 13 No. 7 - a ~  

[ ¢ - 1  1~ ( ¢ 1  r - l ~  
III No. 3 ~0, --~--, ~) No. 6 \~, ~, --~--] 

No. 9 No. 3+a~ No. 12 No. 6 - a  + 
[131] No. 30 No. 3 - a ~  No. 32 No. 6+a~ 

No. 22 No. 3 + a~ No. 24 No. 6 - a ~  

/'1 ~-1'~ ( z - 1  z 1~ 
IV No. 4 ~ ,  0 , - - ~ )  No. 5 \--~--, ~, ~] 

No. 27 No. 4+a~ No. 31 No. 5 - a ~  
[113] No. 10 No. 4+a~" No. 14 No. 5-a~- 

No. 16 No. 4-a~- No. 20 No. 5+a + 

is significant that these reduced groups are aligned 
along the ( l i d  directions, where these directions are 
indicated in Table 6. 

Each group of eight positions consists of two partial 
cubes shifted along a (111) direction. These partial 
cubes are half of the cube whose basis is the a~-'s. 
Before proceeding, we should note that each of the 
32 atomic sites returns to one of these positions about 
80% of the time when the icosahedral transformation, 
M, is repeatedly performed. (The missing icosahedral 
positions are generated shortly.) This property 
implies that the 32 atomic sites satisfy icosahedral 
symmetry, but not exhaustively. The eight basic posi- 
tions, 1 to 8, generate only themselves and others of 
the 32 positions after repeated transformation. There- 
fore, an analysis based on any one of the five coordi- 
nate systems is equally valid. We will choose ai(I) 
and a~(I) and drop the use of I, hereafter. 

When the four groups of the atomic positions are 
viewed along their appropriate (111) directions, they 
appear identical, except for the fact that their origins 
are located at four different atomic positions. Fig. 2 
shows the atomic sites for group I referred to the 
[111] axis. At this stage, we find additional possible 
atomic sites: A, B, C and D belonging to the a ÷ 
frame originating at site 1, and a, b, c and d belonging 
to the a + frame originating at site 8. Along the [111], 
the distance between site 1 and site a is equal to 
the distance between site 8 and site (1 + al + a2+ a3) = 
site [111]. This distance is [ (2 - r ) /2 ]v f f l a , l=  
(1 / 2 r=)J~la,I. Site 8 is located at a distance (r/.2)J31a,I 
from site 1. According to the reference lattice, site 
[111] is one of the legitimate atomic sites. Therefore, 
it is tempting to consider position a to be as legitimate 
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as the [111] site. Similarly, position A can be con- 
sidered to be legitimate since the distance between 
site A and site 8 is equal to that between 1 and a. 
Then let us consider b, c and d and B, C and D. 
Position d is aligned along the [111] direction with 
the [001] and [110] lattice sites when joined with site 
28. These lattice sites are a distance [ 1 -  (z/2)]x/3la,I 
from sites d and 28. In the same fashion, the distance 
between sites 18 and c and sites [100] and [011], 
respectively, is [1 - (r/2)]x/31a, I along the [111] direc- 
tion. A similar situation holds for sites 26 and b and 
[101] and [010] along the [ l i l ]  direction. 

In other words, all the comer positions in the two 
small cubes of a ÷ become possible atomic sites when 
position a is considered to be a legitimate atomic 
site. Similarly, when site A is recognized to be legiti- 
mate, sites B, C and D can be recognized as positions 
equivalent to A in the [111] direction to be paired 
with sites 26, 18 and 28. Thus, all the new sites in the 
a ÷ cubes can be considered as atomic sites, where 
these positions still satisfy the general rule (3.1). 

These sites were not shown in the a lattice described 
in I. For that a lattice, space-filling decorated rhom- 
bohedra were used, with no sites inside rhombohedra.  
The sites a and A are vertices along the shortest body 
diagonal of an imaginary flat (a  = 116.6 °) rhombohe- 
dron which is hidden inside the pointed (a  = 63.4 °) 
rhombohedron. This situation is illustrated in Fig. 3 
for the [ 111 ] direction. 

Similar arrangements can be constructed for the 
other (111) directions. The possible atomic sites 
within the complete unit cell are listed in Table 7. It 
should be noted that the listed positions have transla- 
tional symmetry with respect to the ai's, while a~+'s 
merely give the length of the a + cube edges. The four 
atomic positions, 1, 2, 3 and 4, serve as the origins 
of four a ÷ cubes and each cube creates its companion 
cube through a shift  of (2-r)x/3la~[/2 along the 
appropriate (111) direction. This lattice serves as the 
reference lattice for this material by providing all the 
possible atomic sites. An illustration of the new sites 

1 + a  I +8a2 +a,3 [ t iN t1  1 ~ a 

10,1,11 

[1( 

.~lOlOl 

1 +a., [loo1 111o1 

Fig. 2. Atomic sites for group I, showing the locations of additional 
sites a, b, c, d and A, B, C, D. 

along the [111] direction is shown in Fig. 4 on the 
left. This reference lattice will serve as a guide to all 
of the possible atomic sites in the icosahedral phase 
material. 

4. The occupancy of atomic sites 
and staggered layers 

There are now 64 possible atomic sites in the unit 
cell of the reference lattice. Within realistic physical 
densities, no more than half of these sites can be 
occupied by atoms. Of course, the occupied sites in 
one local unit cell may be different from those 
occupied in another local unit cell. The object of this 
section is to derive the rule that governs the local 
atomic occupancy. 

An allowed stacking of atomic layers is shown in 
Fig. 5. In this diagram, sites 1, a, A and 8 can represent 
layering along a threefold direction. There is no way 
of knowing a priori how to reference a particular 
atomic layering position. For example, a pointed 
rhombohedron may start at layer position A ~ 1 (Fig. 
5a) just as well as at position a (Fig. 5b). As a result, 
a permitted sequence of the rhombohedral construc- 
tion may appear as a staggering of layers where the 
sequence 1, a, A, 8 , . . .  changes locally to 1, a, 1, a , . . . .  

The occupancy sequence of atomic sites can result 
in a staggering of layers. To make the situation more 
complicated, the density limit requires about half of 
the sites to be vacant. In any event, it is already clear 
that the actual atomic construction may have little 
resemblance to the stacking in the unit cell of the 
reference lattice. The staggered occupancy of layers 
creates locally interpenetrating rhombohedra as 
shown in Fig. 4, where a reference lattice is shown 
on the left and an allowed atomic sequence on the 
right. 

(112'r2)",/3 ~ ~ . 

/ / A ('r-- I ,T --1,T --1) l T 

I I t . J  1<,,...+, 
I T  ,- ' -  7 

, 

IN UNiT OF I~a~l 

Fig. 3. Location of sites a and A within a pointed rhombohedron, 
showing imaginary flat rhombohedra. 
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Table 7. The atomic sites in the reference unit cell 

I No.  1 (0, 0, 0) at No.  1 + ~i 
No. 17 No. l + a ~  b t No. 17+~x 
No. 23 No. 1 + a~- ct No. 23 + ~i 
No. 29 No. 1 + aT dl No. 29 +~i 
Ax No. + + + l + a l  + a  2 + a  3 N o .  8 A I + ~ I  
Bx No. + + l + a t  +a 3 No. 26 BI+~I 
Ct No. + + 1 +a  2 +a  3 No. 18 C t + ~ I  
Dt No.  + + l + a  I + a  2 No.  28 D t + ~ x  

(V 1 ) 
II No. 2 ,~,0 a2 No. 2+~n 

No. 21 No. 2-a~" b2 No. 21+~n 
No. 15 No. 2+a~- c2 No. 15+~i I 

No. II No. 2+a~- dz No. ll+~x I 
^ + _  + _  + 

A 2 N o .  , ' - a  t -l-a 2 -t-a 3 N o .  7 '  A 2 + ~ I I  = N o .  7 + [ 1 1 0 ]  

B2 No. + + 2+a2 +a3 No. 25' B2+~H =No. 25+[110] 
C2 No. + + 2 - a l  +a3 No. 19' C 2 + ~ I I = N O .  19+[110] 

+ + 
D 2 No. 2 - a t  + a  2 No. 13' D2+~n=No. 13+[i10] 

[ 'r-X 1~ 
IXI No. 3 ~0,--~-,  ~) a3 No. 3+~m 

No. 9 No. 3 + a + b3 No. 9 "{" ~III 
No. 30 No. 3 - a ~  c3 No. 30+~m 
No. 22 No. 3 + a~ d3 No. 22 + ~III 

+ + + 6' A 3 NO. 3 + a t  - a  2 + a  3 N o .  A3-I-~III = N o .  6 + [ 0 1 1 ]  

B 3 No. 3 - a ~ + a ~  No. 12' B 3 + ~ I I I - - N o .  12+[011] 
(73 No. + + 3+ax +a 3 No. 32' C3+~m=No. 32+[011] 
D3 No. 3+a~--a~- No. 24 D3+~m=No.  24+[0il]  

IV No. 4 ,0,---~--- a 4 No. 4+~rv 

No. 27 No. 4+a~- b4 No. 27+~rv 
No. 10 No. 4+a~ c4 No. 10+~rv 
No. 16 No. 4-a~" d 4 No. 16+~rv 

+ + + 5 t m 4 No. 4+a  x + a  2 --a 3 No. A 4 + ~ I V - -  NO. 5+[10i] 
+ + 

B4 No. 4+a2 -a3 No. 31' Ba+~rv=No. 31+[10i] 
+ + 

(?4 No. 4+a t  -a3  No. 14' C 4 + ~ I v =  NO. 14+[10i] 
D 4 No. + + 4+a t  +a2 No. 20' D4+~rv=No. 20+[107] 

,.:[ (1 
0i.i [1 

(1 

Usually, local nonperiodic effects are accommo- 
dated into the description of a structure using the 
concept of incommensurate modulations on a refer- 
ence lattice. There, the modulation periodicity is gen- 
erally greater than that of the unit cell. In our case, 
the construction using interpenetrating rhombohedra 
requires modulations with periodicities shorter than 
that of the unit cell - i.e. internal modulations rather 
than the external modulations usually accepted in 
modulated crystals. 

We introduce here the appearance of diffraction 
modulations involving Umklapp processes (Reiter & 
Moss, 1982). Suppose the unit cell of the reference 
lattice has a lattice constant a, and the periodicity of 

+ 

( 
( 

> 

> 

/ 
i 

Fig. 4. A reference lattice sequence on the left and  an al lowed 
atomic occupancy  sequence on the right. 

(a)  (b) 

Fig. 5. Possible stacking sequence along a (111) direction. (a)  A 
pointed rhombohedron  starts at site A. (b) A pointed rhombohe-  
dron starts at site a. 
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the internal modulation is given by a / ( H  + e), where 
H is an integer and e is an irrational number smaller 
than one. In the geometrical structure factor, this 
will provide the fundamental mode of modulations, 
A q = ( H + e ) / a ,  which results in the total phase, 
(q + nAq)a = qa + n ( H  + e). Since q is the momentum 
transfer caused by the reference lattice, qa is an 
integer. Thus, the total phase is given by an integer + 
ne. This is an Umklapp process of the fundamental 
mode of modulations, Aq '=  e /a ;  i.e. the fundamental 
mode is the external modulation, whose periodicity 
is a/e ,  which is larger than a. 

Based on this concept, we attempt to understand 
the staggered occupancy of sites in this structure in 
terms of the stacking rule of layers over a long range. 
As shown in Fig. 5, the staggering causes a shift equal 
to the length of the shortest body diagonal of the flat 
rhombohedron, ( 2 -  7-)/2 = (1/27- 2) in units of,/3la,I, 
where a pointed rhombohedron takes over. The 
longest body diagonal of the pointed rhombohedron 
is equal to (7-/2) in the same units, and the ratio of 
these two lengths is 7-3 = 27- + 1. Therefore, the internal 
modulation due to staggering must involve either 72, 
7-3, or maybe both. We observe that the lattice constant 
of the reference lattice is written 

[a,I = laT"l +(1/7-)la~l, 
where the last term is also twice the staggering (shift) 
distance projected back to the (100) direction. There- 
fore, we can now view the staggering as the result of 
the long-range occupancy sequence of either the 
layers or of the a + and the (a+/7-) cubes. 

The experimental results in I showed that there are 
two sets of modulations in momentum space, one of 
which, after conversion into real space, was con- 
sidered as atomic correlation distances leading to the 
creation of the reference lattice. The second set of six 
modulations derived from the experimental data was 
about 4.2 times larger (in momentum space) than the 
first set. Since the experimental error in electron 
diffraction is large, the ratio of these magnitudes 
should be understood to be 27- + 1 = 7 " 3 ( = 4 . 2 3 6 . . . )  in 
actuality. This second set of modulations, which is 
considered to be the fundamental modulation (e.g. 
Bancel, Heiney, Stephens, Goldman & Horn, 1985), 
cannot be referred to correlations because the dis- 
tances are unrealistically small (i.e. of order 0.1 nm). 
We consider that this set is related to the staggering 
of the layer occupancy sequence, as revealed by 
the internal modulations, Iq(2)[ = 7-31q(1)1. F r o m  the 
foregoing, ai and a [  are inversely proportional to 
Iq")l, and the periodicity of the internal modulation 
(in real space) is (1/7- 3) times a~ or a~. This is 
equivalent, via an Umklapp process, to 1/(7-3-4), 
where 4 is the integer closest to 7 "3. Since 

73 _ 7--3 = 4, (4.1) 

the external modulation periodicity is given by 7-3ai. 

As suggested above, this modulation periodicity 
can be viewed as the unit of the stacking occupation 
sequence modifying the reference lattice. This can be 
achieved using a sequence of a~- and (1 / z )a [  cubes 
as shown, for example, in Fig. 4 on the right. The 
length r3lail corresponds to five a~ plus three (1/r)a~- 
cubes: 

5]a~l + 3(1/7-) la[I  = {5(1/7-)  + 3(1/7-2)}1a, [ 

= 7-31a, I. (4.2) 

It appears as if the above analysis leads to the 
conclusion that the structure can be represented by 
a reference lattice with modulation period 7-3[a~[, 
within which five a~- cubes and three (1/7-)a~ cubes 
should be found. Atoms are expected to occupy 
approximately one site out of every two as shown on 
the right side of Fig. 4. Even though the external 
modulation periodicity was found, the sequence of 
a [  and (1/7-)a~ cubes within this periodicity was not 
given. The modulation periodicity is very suggestive 
that the sequence of the two types of cubes is a 
Fibonacci sequence, but our conclusion so far only 
requires an incommensurate periodic modulation 
over the reference lattice. Since Fibonacci sequences 
are nonperiodic, a structure with periodic modula- 
tions could not indefinitely follow a Fibonacci 
sequence rule. The appearance of a partial Fibonacci 
sequence, however, suggests that the above arguments 
can be generalized. 

5. A general method for the determination 
of staggering stacking sequences 

Let N and L be an integer and a Lucas number, 
respectively. The following relation then holds: 

r N + ( -1)Nr  -N = L. (5.1) 

This relation was used in the previous section, with 
N = 3 and L = 4. If the staggered stacking occupancy 
sequence is a nonperiodic Fibonacci sequence com- 
posed of a + cubes (7--1), and (1 / r )a  + cubes (7--2), a 
partial sequence that involves the total number of the 
cubes equal to a Fibonacci number always has the 
total length 7-N[ai[. Examples are shown in the follow- 
ing, where A and B represent the a + cube and (1/7-)a + 
cube, respectively: 

r°: A B  

7-1. A B A  

7-2: A B A A B  
~3: 

y4: 

T N • 

A B A A B A B A  

A B A A B A B A A B A A B  

( A B .  . . ~)( A B "  ). 
~ e q u e n ~ e  ~.N:I Sequence T r~ -2 

(5.2.1) 
(5.2.2) 
(5.2.3) 
(5.2.4) 
(5.2.5) 

(5.2.6) 
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These sequences are classified by the total length z N 
in the unit-cell length la,I. One can immediately see 
that if any of these sequences exists in the real struc- 
ture as an external modulation, the internal modula- 
tion z -N will appear in the diffraction patterns. 

If we compare a r N sequence containing 144 atoms 
with a periodic assembly of the z 3 sequence of the 
same size, the difference in the diffraction patterns is 
a shift of the diffraction peaks and slight changes in 
the peak intensities. The differences are so subtle that 
the patterns are almost identical. The periodic 
assembly of sequences (a modulated crystal) cannot 
be distinguished from a nonperiodic material. 

This situation implies that the true nonperiodic 
sequence could be approximated by a periodic 
assembly of the subsequences and better by the sum 
of those assemblies with different periodicities 
denoted by M:  

z N sequence= Y~ (~'~ sequence)(~ M sequence) 
M < N  

. . .  (~'M sequence). (5.3) 

This is analogous to a transition from the Fourier 
series to the Fourier integral. Physically, this is 
equivalent to the view that the icosahedral material 
is composed of many periodic crystals coexisting 
everywhere, which would be inconsistent with micro- 
domain models. In diffraction, the model always dis- 
plays a set of internal modulations, z TM, as a result 
of the external modulations ~'~, because of (5.1). 

Each of these external modulations will only show 
that the subsequences, M, are composed of the 
appropriate number of a ÷ and (1/z)a + cubes. When 
taken together, they yield information on the arrange- 
ment of sequences of A and B, i.e. the staggering 
sequence of the a ÷ and (1/~')a + cubes can be derived. 
To complete a perfect sequence of ~.N, we require all 
of the modulations up to ~.N (or ~.-N). Of course, 
this is not experimentally possible, because the scat- 
tering angles are limited and the precision is not 
infinite. 

The preceding argument can be generalized in the 
following way. Let f (n )  be a function of atomic site 
n representing the occupancy and staggered stacking 
at n. The atomic scattering factors in the X-ray (elec- 
tron) structure factor will be multiplied by this func- 
tion. This function can be written as a sum of periodic 
functions, g(O, whose periodicities are arbitrarily 
chosen to be L(°: 

f(n)=~,g(i)(n).  (5.4) 
i 

Since g(°(n) can be written in terms of a Fourier 
series whose fundamental mode is ( l /L(°) ,  we obtain 

f ( n ) = ~  ~(i) sin(2,n.min/L(,)). (5.5) ~; (m~) 
i m~ 

The unusual structure factor resulting from the appli- 

cation of this f ( n )  requires a calculation over ever- 
increasing finite domains. The Umklapp process of 
these fundamental modes will appear as the internal 
modulation. In particular, when L (i) is a Fibonacci 
number, the Umklapp process is uniquely determined 
for each fundamental mode. Once these internal 
modulations are identified by the periodic repetition 
of sets of patterns within the diffraction patterns, we 
obtain information on the maximum number for i by 
counting how many possible sets of repetitions exist 
and on the g(0 from intensity measurements. 

Now back to our model. The above discussion helps 
determine the actual occupancy sequence of layers 
within the ~.3 sequence. One can recognize, for 
example, in the twofold pattern (Fig. 1) the square 
frames corresponding to ~'3[bi[, ~21b,I and rib,I, where 
bi's are the reciprocal-lattice vectors for the reference 
lattice. Therefore, the z a sequence obtained in the 
previous section is not the only representation of the 
staggered stacking sequence, and there are the ~.2 and 
z sequences within the ~.3 sequence. Consequently, 
we can conclude that the actual stacking through the 
a ÷ and (1/z)a + cubes is, indeed, the Fibonacci 
sequence shown in (5.2.4). Because of the lack of 
information concerning the 'T 4, ,./.5 etc. in the diffraction 
patterns, we cannot guarantee that the actual 
sequence follows the Fibonacci sequence indefinitely. 
In any event, the staggered occupancy sequence 
derived for layering along one (111) axis, which may 
be a perfect Fibonacci sequence, will be observed 
along all four of these axes. 

6. Discussion 

The derivation of a full atomic scale structure for an 
icosahedral phase alloy began with I in which the 
structure of a reference lattice unit cell was derived. 
In that model, the pattern of atomic sites arose when 
the rhombohedra were decorated by atomic sites 
which follow the atomic arrangement rule derived 
from the experimental data. These decorated 
rhombohedra, however, were space filling and an 
isotropic 1-to-1 (fiat to pointed) rhombohedral pack- 
ing was the result. 

In II, the possible atomic sites in this unit cell were 
used, in turn, to derive additional icosahedral atomic 
positions in the unit cell of the reference lattice. The 
identification of these positions led to another length 
scale through the a ÷ cube, where the edge ratio 
between the a unit cell and the a ÷ cube is z: 1. It 
was recognized that the length of the a unit cell is 
composed of the length of the a ÷ cube and that of 
the (1/z)a ÷ cube, and that the possible atomic posi- 
tions are given by the total length of the sequence of 
the a ÷ cubes and the (1/z)a + cubes. In this case, the 
interpenetration of rhombohedra along (111) is real. 
The occupancy of the atomic sites depends on the 
sequences of these cubes, thus creating local devi- 
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ations from periodicity everywhere in the material. 
These deviations appear in the diffraction patterns as 
internal modulations. The internal modulations are 
then connected uniquely (in the present case) to the 
external modulations through Umklapp processes. 

The rules for the occupancy of the atomic sites are 
thus found through the sequences of atomic layering 
over a large spatial range. One of these modulation 
periodicities agrees well with the second set of 
observed modulations. The appearance of this perio- 
dicity is suggestive that the limit of the occupancy 
sequences should be taken for successively larger 
periodic modulations. This generalization determines 
the entire sequence throughout the material (con- 
sistent with what can be seen from the experiment). 

It is significant that the atomic scale models con- 
structed via experimental analysis lead to periodic 
(modulated) structures rather than aperiodic ones. 
However, the fact that successively larger periodic 
arrays are required to complete the description of the 
occupancy function suggests that the true structure 
is at the limit of the periodic approximations. This 
view yields some physical insight into the meaning 
of almost periodic functions as applied to the Al-Mn 
icosahedral phase. The unusual form of the structure 
factor (occupancy function) calculation relevant to 
the model developed in this series of papers closely 
resembles the Fourier transform associated with 
almost periodic functions. This analysis, which was 
built up of periodic (modulated) sequence models 
can be used to help define the relationship between 
classical three-dimensional periodicity and almost (or 
'quasi') periodicity in a physical system. 

As the physical model is built up along the ( l i d  
axes according to the derived occupancy rules, it is 
possible that long-range flaws may occur. Such flaws 

would disrupt the perfect Fibonacci sequence while 
being consistent with the short-range requirements 
such as the rule that A may have as a neighbor either 
A or B, but B may only have A as a neighbor. Of 
course, such flaws would be very difficult to detect 
experimentally for reasons related to the difficulty of 
separating periodic and almost periodic lattices. 

Viewed thus, the icosahedral phase belongs firmly 
under the classification of crystal rather than glass. 
Only in so far as icosahedral packing is relevant to 
many glasses (and this is considerable), does this 
structure tell us something new about glasses. 

The clue to the discovery of the relationship 
between the reference lattice we derived and the 
Fibonacci sequence lay in the fact that two colinear 
sets of six modulations were derived from the electron 
diffraction patterns, and the ratio of their magnitudes 
was close to 7 -3 . In this regard, it is interesting that it 
was suggested by Mackay (1976) that a three- 
dimensional icosahedral construction be attempted 
based on r 3 - r -3 = 4. Similarly, Mackay (1982) noted 
that inflation of the three-dimensional model results 
in a coincidence of every other point, while in this 
paper we suggest that the construction requires that 
only half of the sites are occupied according to the 
derived occupancy sequence rule. 
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Abstract 

A computer program is described that performs a 
superposition of two protein structures. The program 
calculates a coordinate transformation that minimizes 
the root-mean-square deviation between atoms rep- 
resenting homologous structure in the two proteins. 

0108-7673/86/030172-07501.50 

All atoms of the main chain and those atoms of side 
chains that bear common labels contribute to the 
calculation of the transformation. Required input by 
the user is either a small set of integers representing 
the sequence numbers of spatially equivalent residues 
in the two proteins and/or the initial and terminal 
residues of homologous elements of secondary struc- 
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